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  [1] Forward translation 
  [2] Backward translation  
 [3] Data Diversification 

 [4] Sequence Distillation  
 [5] Data Rejuvenation 
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procedure REVISE(  ,   ) 

     TRAIN_MT( ) 
     TRAIN_MT( ) 
      
    for   do 
           
           
           
             
         if   then 
             if   then 
                     
             else  
                   
             end if 
        else 
                      
        end if 
    end for 
    return   
end procedure            
    

D = (S, T ) ℛ
MS→T ← D = (S, T )
MT→S ← D = (T, S)
D̃ ← ∅

i ∈ |D |
(Si, ̂Ti) ← (Si, MS→T(Si))
( ̂Si, Ti) ← (MT→S(Ti), Ti)
dF ← ℛ(Si, T̂i) − ℛ(Si, Ti)
dB ← ℛ( ̂Si, Ti) − ℛ(Si, Ti)

max(dF, dB) > t
max(dF, dB) = dF
D̃ ← D̃ ∪ {(Si, ̂Ti)}

D̃ ← D̃ ∪ {( ̂Si, Ti)}

D̃ ← D̃ ∪ {(Si, Ti)}

D̃

ST: Translations generated by MT

Prior work primary uses synthetic translations to 
reliably improve MT translation quality in two ways: 

Augmenting original translations: Replacing original translations:

Yet, it remains unclear:  
Where does this improvement come from?

                       WE CONTRIBUTE:
			  An extensive empirical evaluation of the quality  
     of bitext revised with synthetic translations

                         WE HYPOTHESIZE: 
	Synthetic translations are of higher quality (i.e., preserve  
translation equivalence) better  than naturally occurring bitext

   Ένας από τους οικισμούς που δημιούργησαν ήταν ο Καραβάς.
Source	(original)  

Target	A	(original)	
   One of the first towns to be created was Vila Barreto.

  One of settlements to be created was Karavas.
Target	B	(revised)		

“Which sentence (A vs.B) conveys the meaning of the source better?” 

‣ 100 samples  
‣ 3 annotators  
‣ Lang: EL-EN

Findings: Synthetic translations in the revised 
bitexts are more equivalent to the source than  
the original references 88% of the times.

Findings: Revised bitexts yields better induction 
of low- & medium-frequency words, which we 
are more sensitive to noisy misalignments that 
result from poor quality bitext.

Findings Revised bitexts yields better translation quality than training on the original for both MT 
settings (training from scratch & continued training), which further confirms that it yields more reliable 
training signal due to the reduced noise in the synthetic samples.

Experimental Settings

Yes, when… they selectively replacing imperfect 
translations in naturally occurring bitexts 
under a semantic equivalence condition

intrinsic evaluations of semantic 
equivalence and extrinsic evaluations on 
BLI and MT tasks 

According to…

Data: https: //github.com/Elbria/xling-SemDiv-Equivalize. 

✓  Training bitexts: WikiMatrix  

✓  Language-pairs: EL-EN     [~750K]  
                                RO-EN    [~600K] 

✓  BLI Test Sets:      MUSE lexicons 

✓  MT Test Sets:      TED data

Medium	Resource	Focus:	
(a) Sufficient	MT	Quality	
(b) Bitext	Improvement	needed

✓ MT [from scratch]: Transformer 

✓ MT [continued training]: mt5

DATA:

MODELS:

Original vs. Revised Bitext Evaluation

Human Assessments of EquivalenceIntrinsic:

Extrinsic: Performance on downstream NLP tasks 
➡  Bilingual Lexicon Induction via word alignment

Intuition: Better Bitext Quality yields more 
accurate cross-lingual lexical mappings

Why?

➡  Machine Translation (from scratch & continued 
training ~ WMT Parallel Corpus Filtering evaluations)  

Why?
Intuition: Better Bitext Quality yields more 
reliable training signal

Given semantic equivalence classifier* 

Train NMT models to translate in   
 opposite directions 

 Generate synthetic bitext by pairing 
 original references w/ synthetic transl.

Compute equivalence scores for 
original & synthetic pairs 

Replace the original with a synthetic 
translation only if it yields a more 
equivalent translation 

otherwise keep the original 

 *Semantic Equivalence Classifier: 
  Fine-tuned mBERT of synthetic divergences of varying 
  granuraliry based on our previous work [7]  


