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Parallel texts are not always exact
translations
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Parallel texts contain
fine-grained semantic divergences

Mostly equivalent parallel texts that contain a small
number of divergent tokens
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Parallel texts are not always exact
translations

votre pere est francais  your parent is french

votre pere est francais  who is your father



Parallel texts contain
coarse-grained semantic divergences

unrelated sentence pairs — noisy training signal

votre pere est francais ~ who is your father



Coarse-grained semantic divergences
are typically excluded from training
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Fine-grained semantic divergences
are treated as equivalent at Ml training

votre pere est francais  your father is french

votre pere est francais  your parent is french



Our work

How do fine-grained divergences impact NM'1?



Our work

How do fine-grained divergences impact NM'1?

hurt translation quality



Our work

How do fine-grained divergences impact NM'1?

hurt translation quality
more repetitive loops



Our work

How do fine-grained divergences impact NM'17?

hurt translation quality
more repetitive loops
increase prediction uncertainty



Our work

How do fine-grained divergences impact NM'1?

hurt translation quality
more repetitive loops
increase prediction uncertainty

How can we mitigate their negative impact?



Our work

How do fine-grained divergences impact NM'1?

hurt translation quality
more repetitive loops
increase prediction uncertainty

How can we mitigate their negative impact?

by encoding divergences as token factors



Divergences matter for NM'1 because
they yield unreliable training signals
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Divergences matter for NM'1 because
they yield unreliable training signals
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How do fine-grained divergences impact NM'1?

Controlled analysis on artificial divergences

Lxperimental Setting
> Training bitext ~ :  WikiMatrix (mined)
» Test set . TED
[Language-pair . French = English

» NM'I architecture : 'Iransformer
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Measuring the impact of synthetic
divergences on NM'T’

EQUIVALENT

ils vous demandent votre aide  they are asking your help

PHRASE DELETION

ils vous demandent votre aide  they are asking

LEXICAL SUBSTITUTION
ils vous demandent votre aide  they are asking your mercy

PHRASE REPLACEMENT
ils vous demandent votre aide  they were ignoring his help
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IFine-grained Divergences have small impact on BLLELU
when equivalents overwhelm training data
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Iine-grained Divergences degrade BILEU
when they overwhelm the training data
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Fine-grained Divergences increase
the uncertainty of token predictions
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IFine-grained Divergences: Impact on
degenerated hypotheses

1.e., “I’ve never studied sculpture, engineering and architecture, and the engineering and architecture”
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Fine-grained Divergences increase
the frequency of degenerated hypotheses

i.e., “I've never studied sculpture, engineering and architecture, and the engineering and architecture”

7% degenerations
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Our work

How can we mitigate their negative impact?

by encoding divergences as token factors
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DIV-FACTORS: Inform NM'I training
of divergent tokens

SOURCE TARGET

votre pere est francais your parent is french

EQ DIV, EQ EQ EQ DIV, EQ EQ



Source-side factors: divergent tags are
encoded as additional features
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‘Target-side factors: divergent tags are
agenerated additional sequence

EQ EQ DIV EQ
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Mitigating the impact of divergences:
Experimental Setup

Models

O LLquivalents

O DIV-AGNOSTIC
O DIV-FACTORS

> 'I'raining bitext
> "lestset
> language-pair

> NM'I architecture :

O% 20% 33% 55%

WikiMatrix (mined)
TED

French « Lnglish
"I ranstormer



Divergences decrease translation quality
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Semantic Divergences
decrease translation quality
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Modeling divergences via factors help NM'T
recover from BLLILU degradations
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Semantic Divergences decrease
the confidence of token predictions
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Modeling divergences via factors mitigate their
negative impact on models' confidence
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Semantic Divergences increase the frequency of
degenerations

*1OUISIP %,

0% | 20% 33% 53%

% divergences

B DIV-AGNOSTIC B DIV-FACTORS Equivalents



Modeling semantic divergences via factors
yield fewer degenerations
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