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are treated as equivalent at MT training
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Measuring the impact of synthetic 
divergences on NMT
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Fine-grained Divergences increase  
the uncertainty of token predictions
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Source-side factors: divergent tags are 
encoded as additional features 



Target-side factors: divergent tags are  
generated additional sequence
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decrease translation quality



DIV-AGNOSTIC DIV-FACTORS Equivalents

Modeling divergences via factors help NMT 
recover from BLEU degradations
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DIV-AGNOSTIC DIV-FACTORS Equivalents

Modeling divergences via factors mitigate their 
negative impact on models' confidence 
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DIV-AGNOSTIC DIV-FACTORS Equivalents

Modeling semantic divergences via factors 
yield fewer degenerations

% divergences
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https://github.com/Elbria/xling-SemDiv-NMT


