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Problem Definition

= Mined bitexts contain imperfect or noisy o LATAITN;,D LS . [ IMPROVING MINED BITEXTS _ | % Filtering decreases the size of
translations [1] [2] éhe visitedbiersisteri  RIBIEIEIAEeSiall  They are visiting the doctor. — | training samples which 1s

= Bitext Quality Matters for Neural Machine He was borm in London. < S S Gt He was born in London She visited her sister. o STRTHAT W 3d 3MTed. They are visiting the doctor: crucial for low-resource NMT.
Translation [3] [4] I am not going back. TSR fol S @A IR, The cat is eating her food. He was bor in London. TSIl S SSTHEA I He was born in London.

= Bitext Filtering improves final model quality [5] A BITEXTEDIT | BitextEdit revises noisy bitexts
but it is Suboptimal in low-resource conditions . . . . He is visiting a doctor. d STFRAAT W2 2d 3Ted. He is visiting a doctor. < via UtIhZIIlg imperfect
where data are limited Noisy bl.teXtS consist of a mixture of good- . He was born in London, T PSS . He was born in London. translations in a more effective

= What can we do? We propose to refine the quality, imperfect, and poor-quality translations I am not going back R ST AT I am not going back way, while keeps the size of

going back. : am not going back. ’

mined bitexts via automatic editing! training data untouched.

BitextEdit Training Strategy

Our multi-task model is trained using
!Ir-)ﬂ)‘ x'r=| Aevounbpyel avrictoyn texvoloyio grov kdaouo. Bitext Editing synthetic supervision from mined bitexts.

Xf= Agv vdpyel avtiotoryn teXvoA0Yio GTO EUTOPLO. - (IEb )Iw x',=| There is no competitive technology right now. Bitext Minin

Starting from an original bitext (x,, x), we

x,=  No equivalent technology exists on the market.

Bitext Mining

mine imperfect translations x; and x, for each
No equivalent technology exists on the market. Agv vndpyel avtiotoym texvoroyio grov k0guo. <f> Aevondpyel aviiotoyn TeXvoAOYia. GTO EUTOPIO. .

reference using LASER [6].
No equivalent technology exists on the market. <MASK > <f>  Aevondpyet avrictoryn teXvoroYio 6TO EUTOPIO. Bitext Editing

A sequence-to-sequence Transformer model is
trained to translate and reconstruct the

TRANSFORMER

There is no competitive technology right now. Agv vmapyel avTicToyn TEXVOAOYia 6TO EUmOplO. <e>  Noequivalent technology exists on the market. original references given synthetically
, , , : . . extracted bitexts representing imperfect
<MASK > Agv vapyel avtiotoyn texvoroyio oto gundPLO. <e>  No equivalent technology exists on the market. .
translations.
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