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BitextEdit: Automatic Bitext Editing  
for Improved Low-Resource Machine Translation 

BitextEdit Training Strategy
Our multi-task model is trained using 
synthetic supervision from mined bitexts.

Bitext Mining 
Starting from an original bitext ( ), we 
mine imperfect translations  and  for each 
reference using LASER [6].  

Bitext Editing
A sequence-to-sequence Transformer model is 
trained to translate and reconstruct the 
original references given synthetically 
extracted bitexts representing imperfect 
translations.
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Extrinsic Evaluation Results

➡ Mined bitexts contain imperfect or noisy 
translations [1] [2]

➡ Bitext Quality Matters for Neural Machine 
Translation [3] [4]

➡ Bitext Filtering improves final model quality [5] 
but it is suboptimal in low-resource conditions 
where data are limited 

➡ What can we do? We propose to refine the 
mined bitexts via automatic editing! 

Noisy bitexts consist of a mixture of good-
quality, imperfect, and poor-quality translations

Filtering decreases the size of 
training samples which is 
crucial for low-resource NMT.

BitextEdit revises noisy bitexts 
via utilizing imperfect 
translations in a more effective 
way, while keeps the size of 
training data untouched. 

Bitexts that pass through the 
noisy filtering step 

Bitexts that are filtered based on 
the filtering step

✓ Training data:
‣ CCMatrix Bitexts [7]
‣ Revise Pool B

✓ Model:
‣ Transformer NMT

✓ Evaluation:
‣ BLEU (spm-BLEU)
‣ FlORES test set
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Number of bitexts manually 
rated as perfect translations (i.e., 
No difference), partial 
translations (i.e., some meaning 
difference), and wrong 
translations (i.e., unrelated) for 
a random sample of original vs. 
refined CCMatrix EN-EL data. 

Takeaway: BitextEdit 
improves bitext quality based 
on intrinsic evaluation results.
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Takeaways: 
• BitextEdit improves bitext quality based on 

extrinsic MT evaluation tasks (i.e., provides 
better training. signal compared to the 
Original).

• BitextEdit is better suited for low-resource 
language pairs than aggressive filtering that 
reduces the training set size.

We introduce BitextEdit—an editing approach for bitext 
quality improvement  that we show is better suited for 
low-resource language pairs. Those findings highlight the 
importance of the good quality bitexts in scenarios where 
large quantities cannot be guaranteed and motivate future 
research on improving low-resource NMT further.
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