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✓  no human-annotated training data

✓  divergences can be fine-grained
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Divergent mBERT: Learning to rank 
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[SEP]
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Ranking performs best across metrics
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https://github.com/Elbria/xling-SemDiv


