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What is a parallel text?
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“a parallel text is a text placed alongside 
its translation or translations” *

* Wikipedia: https://en.wikipedia.org/wiki/Parallel_text
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What is a parallel text?

https://en.wikipedia.org/wiki/Parallel_text


Human translation 
e.g., FLORES  

Alignment of translated documents 
 e.g., ParaCrawl

Mining from monolingual texts 
 e.g., WikiMatrix 

Machine Translation 
 e.g., XNLI
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How to obtain parallel texts?



Alignment of translated documents 
 e.g., ParaCrawl

Mining from monolingual texts 
 e.g., WikiMatrix 

Machine Translation 
 e.g., XNLI

Parallel texts in the MT pipeline
03/35

Human translation 
e.g., FLORES  



Alignment of translated documents 
 e.g., ParaCrawl

Mining from monolingual texts 
 e.g., WikiMatrix 

Machine Translation 
 e.g., XNLI

Parallel texts in the MT pipeline
03/35

Human translation 
e.g., FLORES   EVALUATION DATA
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Human translation 
e.g., FLORES  
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Human translation 
e.g., FLORES  

PSEUDO TRAINING DATA



Alignment of translated documents 
 e.g., ParaCrawl

Mining from monolingual texts 
 e.g., WikiMatrix 

Parallel texts in the MT pipeline
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Automatic extraction of  
parallel texts introduces noise
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 EN   He talks about Jay Gatsby 
 DE   Μιλάει για τον Τζεί Γκατσπι  

On the Impact of Various Types of Noise on Neural Machine Translation; Huda 
Khayrallah and Philipp Koehn; WNLG 2018

Wrong language
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 EN   All helicopters have adjustments 
 DE   All helicopters have adjustments 

Automatic extraction of  
parallel texts introduces noise

On the Impact of Various Types of Noise on Neural Machine Translation; Huda 
Khayrallah and Philipp Koehn; WNLG 2018

Input copy
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 EN   All helicopters have adjustments 
 DE   All helicopters have adjustments 

Automatic extraction of  
parallel texts introduces noise

On the Impact of Various Types of Noise on Neural Machine Translation; Huda 
Khayrallah and Philipp Koehn; WNLG 2018

Only 5% causes approx. 10 
BLEU degradation



After noise filtering… 
How parallel is “parallel” text?
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Findings of the WMT 2018 Shared Task on Parallel Corpus Filtering; Philipp Koehn, 
Huda Khayrallah, Kenneth Headfield & Mikel L.Forcada WMT 2018
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How parallel is “parallel” text?
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EN   After Caesar's death, he joined the party of Cassius.

FR   Après la mort du dictateur il est accusé par Cassius  
        de contre Rome.

After noise filtering… 
How parallel is “parallel” text?
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EN   After Caesar's death, he joined the party of Cassius.

FR   Après la mort du dictateur il est accusé par Cassius  
        de contre Rome.

After the death of the dictator he is accused by Cassius  
of conspiring against Rome.

After noise filtering… 
How parallel is “parallel” text?
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EN   After Caesar's death, he joined the party of Cassius.

FR   Après la mort du dictateur il est accusé par Cassius  
        de contre Rome.

After the death of the dictator he is accused by Cassius  
of conspiring against Rome.

After noise filtering… 
How parallel is “parallel” text?

topically related — coarse meaning differences
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EN    “The Maple Leaf Forever" served for many years as   
          an unofficial Canadian national anthem.

FR    “The Maple Leaf Forever” est un chant patriotique  
          pro canadien anglais.

After noise filtering… 
How parallel is “parallel” text?
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After noise filtering… 
How parallel is “parallel” text?

      The Maple Leaf Forever is an English Canadian  
     patriotic song.
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EN    “The Maple Leaf Forever" served for many years as   
          an unofficial Canadian national anthem.

FR    “The Maple Leaf Forever” est un chant patriotique  
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After noise filtering… 
How parallel is “parallel” text?

      The Maple Leaf Forever is an English Canadian  
     patriotic song.

added content
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EN    “The Maple Leaf Forever" served for many years as   
          an unofficial Canadian national anthem.

FR    “The Maple Leaf Forever” est un chant patriotique  
          pro canadien anglais.

After noise filtering… 
How parallel is “parallel” text?

      The Maple Leaf Forever is an English Canadian  
     patriotic song.

mistranslated content
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EN    “The Maple Leaf Forever" served for many years as   
          an unofficial Canadian national anthem.

FR    “The Maple Leaf Forever” est un chant patriotique  
          pro canadien anglais.

After noise filtering… 
How parallel is “parallel” text?

      The Maple Leaf Forever is an English Canadian  
     patriotic song.

shared content — fine-grained meaning differences
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Parallel sentences where source and target  
do not convey the same meaning

Cross-lingual Semantic Divergences



OUTLINE

CHAPTER A: How frequent are they?

Cross-lingual Semantic Divergences

CHAPTER B: How can we detect them?

CHAPTER C: How do they impact NMT?
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CHAPTER A: How frequent are they?

CHAPTER B: How can we detect them?

CHAPTER C: How do they impact NMT?

Cross-lingual Semantic Divergences



- annotators without expert knowledge 
- divergences vary in their granularity 
- annotator agreement

Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by 
Learning to Rank; Eleftheria Briakou and Marine Carpuat; EMNLP 2020
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Annotating  
Cross-lingual Semantic Divergences 

CHALLENGES



Goal: encourage 
annotator’s 
sensitivity to subtle 
meaning differences  

Annotation Protocol
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Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by 
Learning to Rank; Eleftheria Briakou and Marine Carpuat; EMNLP 2020

Annotating  
Cross-lingual Semantic Divergences 



Rationalized 
English

FREnch           
Semantic       
Divergences             

Goal: encourage 
annotator’s 
sensitivity to subtle 
meaning differences  

Annotation Protocol
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Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by 
Learning to Rank; Eleftheria Briakou and Marine Carpuat; EMNLP 2020

Annotating  
Cross-lingual Semantic Divergences 



👤
Given an English-French WikiMatrix sentence-pair

 REFRESD: Annotation Protocol 11/35

Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by 
Learning to Rank; Eleftheria Briakou and Marine Carpuat; EMNLP 2020

She made a courtesy call to the Hawaiian Islands.  
Il fait une escale aux îles Hawaï.



A. highlight spans that differ in meaning

👤
Given an English-French WikiMatrix sentence-pair

She made a courtesy call to the Hawaiian Islands.  
Il fait une escale aux îles Hawaï.

rationales

 REFRESD: Annotation Protocol 11/35
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A. highlight spans that differ in meaning

B. make sentence-level judgment  NO MEANING DIFFERENCE

SOME MEANING DIFFERENCE

UNRELATED

👤
Given an English-French WikiMatrix sentence-pair

She made a courtesy call to the Hawaiian Islands.  
Il fait une escale aux îles Hawaï.

rationales

 REFRESD: Annotation Protocol

distinct 
classes
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64% semantic divergences

‣ Rationales improve annotator agreement 

       Krippendorf’s α: 0.60           0.41 & 0.49 

‣ Semantic divergences are frequent in REFRESD

 REFRESD: Annotation findings 12/35
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CHAPTER A REVISITED:  
How frequent are semantic divergences?

24%


40%

36%

  Unrelated 

  Some meaning difference 

  No meaning difference



OUTLINE

CHAPTER A: How frequent are they?

CHAPTER B: How can we detect them?

CHAPTER C: How do they impact NMT?

Cross-lingual Semantic Divergences



Detecting Semantic Divergences: 
Problem definition

She made a courtesy call to the Hawaiian Islands.  
Il fait une escale aux îles Hawaï.

EQUIVALENCE VS. DIVERGENCE

INPUT

OUTPUT
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✓  no human-annotated training data 
✓  divergences can be fine-grained
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[SEP]
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[SEP]
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Divergent mBERT  
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mBERT

[SEP]

[CLS]

is more fine-grained than x y

D = {(x, y)}x y

contrastive pair
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Divergent mBERT  
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Divergent mBERT  
Learning to rank contrastive pairs 

[CLS] [SEP]

mBERT

[SEP]
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max{0,ξ − F(x) − F(y)}F(x) F(y)
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is more fine-grained than x y
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Predicting token divergences: 
Problem definition

She made a courtesy call to the Hawaiian Islands.  
Il fait une escale aux îles Hawaï.

EQ EQ EQ DIV DIV EQ EQ EQ DIV

INPUT

OUTPUT

EQ EQ EQ DIV DIV EQ EQ
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EQ DIV DIV EQ EQ EQ EQ DIV EQ[SEP] [SEP][CLS]z

The economic situation was poorH συνθήκη είναι φτωχή
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Divergent mBERT  
Token-level prediction
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[SEP]
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Divergent mBERT  
Token-level prediction



max{0,ξ, − F(x) + F(y)} +
1

|y |

|y|

∑
t=1

LCE(Pyt
, zt)

Learn to rank contrastive pairs & predict divergent tokens
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Divergent mBERT  
Multi-task variant
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Sentence prediction Token prediction
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Synthetic training data  



Synthetic training data  
Seed equivalent

Now however one of them is suddenly asking  your 
help and you can see from this how weak they are.


Maintenant cependant l’un d’eux vient soudainement 
demander votre aide et vous pouvez voir à quel point 
ils sont faibles 
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Synthetic training data  
Subtree Deletion
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Synthetic training data  
Phrase Replacement
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Maintenant cependant l’un d’eux vient soudainement 
demander votre aide et vous pouvez voir à quel point 
ils sont faibles 

Now however one of them is absolutely fighting his   
policy and you can see from this how weak they are.
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Synthetic training data  
Phrase Replacement
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Synthetic training data  
Lexical Substitution
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Maintenant cependant l’un d’eux vient soudainement 
demander votre aide et vous pouvez voir à quel point 
ils sont faibles 

Now however one of them is suddenly asking  your 
mercy and you can see from this how weak they are.
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Synthetic training data  
Lexical Substitution
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Seed equivalent
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Subtree deletion

Phrase Replacement

Lexical Substitution

Contrastive pairs: 
Divergences contrast with specific seed
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Lexical Substitution>Seed equivalent

Subtree deletion

Phrase Replacement>

>

Lexical Substitution

Lexical Substitution
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Divergence ranking: 
Learning to rank contrastive divergences
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Rank contrastive divergences of increasing granularity



Divergence detection:   
Evaluation on REFRESD

NO MEANING DIFFERENCE

SOME MEANING DIFFERENCE

UNRELATED

Equivalent  

Divergent}
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Sentence prediction

Token prediction

SOME MEANING DIFFERENCE } Rationales
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LASER Lexical Substitution Phrase Replacement
Subtree Deletion Divergence Ranking

Divergence Ranking Exploits  
Diverse Synthetic Samples Better
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Divergences Ranking yields  
moderate results on token prediction

27/35



CHAPTER B REVISITED:  
Can we automatically detect divergences?

  without supervision  
  by learning to rank divergences  
  at sentence & token level 



OUTLINE

CHAPTER A: How frequent are they?

CHAPTER B: How can we detect them?

CHAPTER C: How do they impact NMT?

Cross-lingual Semantic Divergences



Assumptions of semantic equivalence  
in Neural Machine Translation

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021
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�J(θ) =
N

∑
n=1

T

∑
t=1

log p(y(n)
t ∣ y(n)

<t , x(n); θ)

your parent is french votre père est français 

Divergences matter for NMT because  
they yield unreliable training signals

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021
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�J(θ) =
N

∑
n=1

T

∑
t=1

log p(y(n)
t ∣ y(n)

<t , x(n); θ)

your parent is french votre père est français 

Divergences matter for NMT because  
they yield unreliable training signals

t = 1

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021
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your parent is french t = 1votre père est français 

�J(θ) =
N

∑
n=1

T

∑
t=1

log p(y(n)
t ∣ y(n)

<t , x(n); θ)

Divergences matter for NMT because  
they yield unreliable training signals

t = 2

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021
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your parent is french t = 1votre père est français 

Divergences matter for NMT because  
they yield unreliable training signals

t = 3

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021
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your parent is french 

t = 1

Divergences matter for NMT because  
they yield unreliable training signals

votre père est français 

�J(θ) =
N

∑
n=1

T

∑
t=1

log p(y(n)
t ∣ y(n)

<t , x(n); θ)

t = 4

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021
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How do fine-grained divergences  
impact NMT?

Controlled analysis on artificial divergences

Training bitext                WikiMatrix (mined) 
Test set                              TED  
Language-pair                 French to English 
NMT architecture          Transformer

Experimental Setting

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021
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PHRASE DELETION

PHRASE REPLACEMENT

LEXICAL SUBSTITUTION

Measuring the impact of  
synthetic divergences on NMT

EQUIVALENT
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Fine-grained Divergences increase  
the uncertainty of token predictions
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Fine-grained Divergences increase  
the frequency of degenerated hypotheses
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  hurt translation quality  
  more repetitive loops  
  increase prediction uncertainty 

CHAPTER C REVISITED:  
How do semantic divergences impact NMT?



CHAPTER D BONUS:  
How can we mitigate the negative impact 
Of semantic divergences NMT?

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021

by encoding divergences as token factors



CHAPTER D BONUS:  
How can we mitigate the negative impact 
Of semantic divergences NMT?

Beyond noise: Mitigating the impact of  Fine-grained Divergences on Neural Machine 
Translation; Eleftheria Briakou and Marine Carpuat; ACL 2021

by encoding divergences as token factors



Big Picture Revisited

ANNOTATE
DETECT

UNDERSTANDREFINE

CHARACTERIZE INTEGRATE

35/35



Big Picture Revisited

ANNOTATE
DETECT

UNDERSTANDREFINE

CHARACTERIZE INTEGRATE

35/35



Big Picture Revisited

ANNOTATE
DETECT

UNDESTANDREFINE

CHARACTERIZE INTEGRATE

35/35



Questions?

ebriakou@cs.umd.edu


