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Why multiple embeddings for a single word?

Words change their meaning based on the context they reside in.

We need Distributional Semantic Models (DSMs) that:

I go beyond the representation of words by one point in the
semantic space

I are able to capture the distinct meanings of polysemous
words
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Why topic-based embeddings?

Different contexts can be found under different topic domains.
Topic-embeddings can capture variations in word semantics

Hypothesis

Polysemous words may change their semantics under different topics
Monosemous words share the same semantics regardless of their
topic

How could we create a unified space of multiple topic
representations per word?
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Cluster sentences ⇒ topic sub-corpora

I Train K TDSMs

3. Project each TDSM to Global-DSM

Anchor Selection
Unified Topic-based DSM (UTDSM)

4. Smoothing approach



Anchor Selection

I Anchors ⇒ define mappings
⇒ stable relationships

I Monosemous words

Hypothesis

Semantic relationships between monosemous words remain
stable across topic domains

Relative distances between monosemous words are preserved
across TDSMs!
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Anchor Selection

I Anchors ⇒ define mappings
⇒ stable relationships

I Monosemous words

I How to retrieve monosemous words
without supervision?

I Semantic similarity matrices!

Hypothesis

Semantic relationships between monosemous words remain
stable across topic domains

Relative distances between monosemous words are preserved
across TDSMs!



Semantic Similarity Matrices
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I Similarity matrices are aligned (Artetxe et al., 2018)

I Compare similarity distributions between global and topic
spaces

I How? ⇒ Euclidean distance



Semantic Similarity Matrices

Semantic anchors should have consistent similarity distributions
regardless of the domain they exist in
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Semantic Mappings

The transformation matrix Mk ∈ Rd×d that projects in the k-th
topic space to the global space is learned via solving :1

where,
A is the list of semantic anchors
αj
k ∈ Rd is the vector of the j-th anchor word in the k-th topic

space
αj
g ∈ Rd is the corresponding vector in the global space

1Orthogonal Procrustes problem Schönemann (1966)
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Semantic Mappings

The transformation matrix Mk ∈ Rd×d that projects in the k-th
topic space to the global space is learned via solving :1

where,
A is the list of semantic anchors
αj
k ∈ Rd is the vector of the j-th anchor word in the k-th topic

space
αj
g ∈ Rd is the corresponding vector in the global space

Given a word and its k-th topic distributed representation
xk ∈ Rd, we compute its projected representation x′k ∈ Rd as
follows:

x′k = Mkxk
1Orthogonal Procrustes problem Schönemann (1966)
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I Lessen the estimation error introduced to unified space
through:

I semantic mappings
I sparse training data

I Closely positioned vectors may correspond to the same
meaning

I Smoothed representations capture finer-grained word
semantics
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Smoothing Approach

I Each word’s topic embeddings are clustered into N
Gaussian distributions via a Gaussian Mixture Model
(GMM)

I Closely positioned topic embeddings are assigned to the
same component

I Gaussian distribution forms a semantically coherent
unit that corresponds to closely related semantics of the
target word

I The mean vector of each Gaussian distribution is used as
a representative vector of each component



Contextual Semantic Similarity (1/2)

I Dataset: Stanford’s Contextual Word Similarities (SCWS)

I Task: Predict semantic similarity between a pair of words
provided in sentential contexts

I Metrics:
I AvgSimC: weighs the contribution of each topic-based

word embeddings according to probability of the word
belonging to that topic

I MaxSimC: uses only the topic-based word embedding that
corresponds to the most probable topic assignment
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Contextual Semantic Similarity (2/2)

I Multi-topic embeddings perform better that single
representations

I Smoothing improves over MaxSimC—a metric sensitive to
noisy word representations

I Results are competitive to the state-of-the-art models



Text Classification

I Dataset: 20NewsGroup dataset

I Task: Classify each document into one of the 20 different
newsgroups based on its content

I Document-level embeddings used as features

I SVM classifier

Method F1-score Accuracy

Global-DSM 62.9 63.3
Unified-DSM 64.5 65.5

Document level representations extracted from multiple
topic-based embeddings outperform single-prototype models.



Paraphrase Identification

I Dataset: Microsoft Paraphrase dataset

I Task: Identifying whether two given sentences can be
considered paraphrases or not

I Sentence-level embeddings used as features

I SVM classifier

Method F1-score Accuracy

Global-DSM 62.0 69.2
Unified-DSM 64.0 69.4

Sentence level representations extracted from multiple
topic-based embeddings outperform single-prototype models.



Qualitative Results

I Unaligned topic sub-spaces

I Words demonstrate similar area coverage regardless of
their polysemy



Qualitative Results

I Aligned topic sub-spaces

I Semantic relationships between words are better captured

I Area under a word’s distribution is indicative of its degree
of polysemy



Conclusion

I Unified space of multiple topic-based DSMs

I unsupervised approach for semantic anchor extraction

I projected word embeddings yield state-of-the-art results on
contextual similarity

I outperform single vector representations in downstream
NLP tasks

I Code at: https://github.com/Elbria/utdsm_naacl2018

https://github.com/Elbria/utdsm_naacl2018
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