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Gotta see both sides of the story You have to consider both sides of the story. 
Informal Formal



Generate a well-formed sentence that matches a desired stylistic attribute 
while preserving the meaning of the input sentence

Fluency StyleMeaning

Challenges in Style Transfer: Evaluation

    Towards actual (not operational) textual style transfer auto-evaluation. Pang. 2019 
    Unsupervised evaluation metrics and learning criteria for non-parallel textual transfer. Pang and Gimpel. 2019 
    Evaluating style transfer for text. Mir et al. 2019 
    Style transfer for texts: Retrain, report errors, compare with rewrites. Tikhonov et al. 2019 
    Style transfer and paraphrase: Looking for a sensible semantic similarity metric. Yamshchikov et al. 2021
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✓ Style:             XLM-R regression models fine-tuned  on English  
✓ Meaning:      chRF score with input references 
✓ Fluency:       XLM-R pseudo-perplexity 

Proposed best practices
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Empirical Evaluation of Automatic Metrics for 
Style Transfer Evaluation

              Correlation analysis of automatic metrics w/ human ratings

Fluency Style Meaning

              … through a multilingual lens

              … with formality as a case study
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Empirical Evaluation of Automatic Metrics for 
Style Transfer Evaluation: Formality focus

Rate the fluency of the given sentence from 1 to 5

Rate the formality of the given sentence from -3 to +3

Rate the similarity of the two sentences from 1 to 6

Availability of human ratings collected consistently across 
evaluation dimensions multiple languages*

} Brazilian-
Portuguese

Italian

French
5 systems per language; 100-500 outputs per system *Rao et al, Briakou et al.
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(2) Multilingual framing: cross-lingual transfer
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String-based 
Require access to a reference segment

Unsupervised 
Based on pre-trained embeddings

Supervised 
Fine-tune on labeled data  
(Semantic Textual Similarity)
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Experimental Settings
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