

Evaluating the Evaluation Metrics for Style Transfer: A Case Study in Multilingual Formality Transfer

Eleftheria Briakou

ebriakou@cs.umd.edu

Sweta Agrawal

sweagraw@cs.umd.edu

Joel Tetreault

jtetreault@dataminr.com

Marine Carpuat

marine@cs.umd.edu

"style is an intuitive notion involving the manner in which something is said"

McDonald and Pustejovsky. 1985

"style is an intuitive notion involving the manner in which something is said"

McDonald and Pustejovsky. 1985

Generate a well-formed sentence that matches a desired stylistic attribute while preserving the meaning of the <u>input sentence</u>

"style is an intuitive notion involving the manner in which something is said"

McDonald and Pustejovsky. 1985

Generate a well-formed sentence that matches a desired stylistic attribute while preserving the meaning of the input sentence

"style is an intuitive notion involving the manner in which something is said"

McDonald and Pustejovsky. 1985

Generate a well-formed sentence that matches a desired stylistic attribute while preserving the meaning of the input sentence

"style is an intuitive notion involving the manner in which something is said"

McDonald and Pustejovsky. 1985

Generate a well-formed sentence that matches a desired stylistic attribute while preserving the meaning of the input sentence

"style is an intuitive notion involving the manner in which something is said"

McDonald and Pustejovsky. 1985

Generate a well-formed sentence that matches a desired stylistic attribute while preserving the meaning of the input sentence

Informal

Gotta see both sides of the story

Formal

You have to consider both sides of the story.

Challenges in Style Transfer: Evaluation

Generate a well-formed sentence that matches a desired stylistic attribute while preserving the meaning of the input sentence

Towards actual (not operational) textual style transfer auto-evaluation. Pang. 2019

Unsupervised evaluation metrics and learning criteria for non-parallel textual transfer. Pang and Gimpel. **2019**

Evaluating style transfer for text. Mir et al. **2019**

Style transfer for texts: Retrain, report errors, compare with rewrites. Tikhonov et al. 2019

Style transfer and paraphrase: Looking for a sensible semantic similarity metric. Yamshchikov et al. **2021**

(1) structured literature review

(2) empirical evaluation of most commonly used metrics

(1) structured literature review

(2) empirical evaluation of most commonly used metrics

(1) structured literature review

(2) empirical evaluation of most commonly used metrics

(1) structured literature review

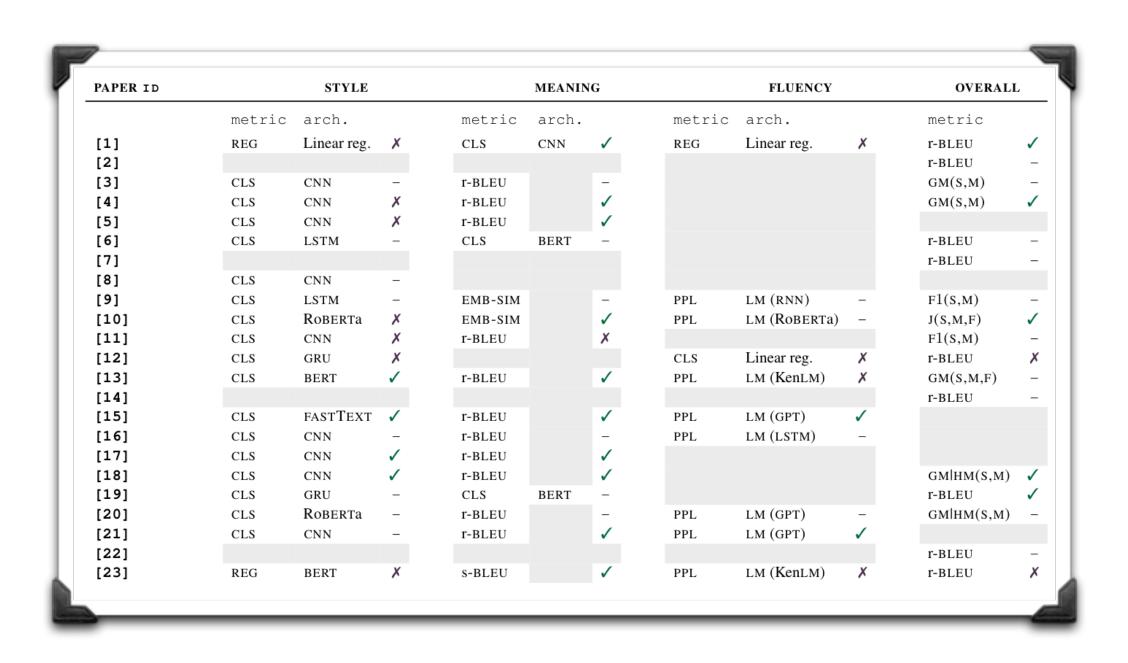
(2) empirical evaluation of most commonly used metrics

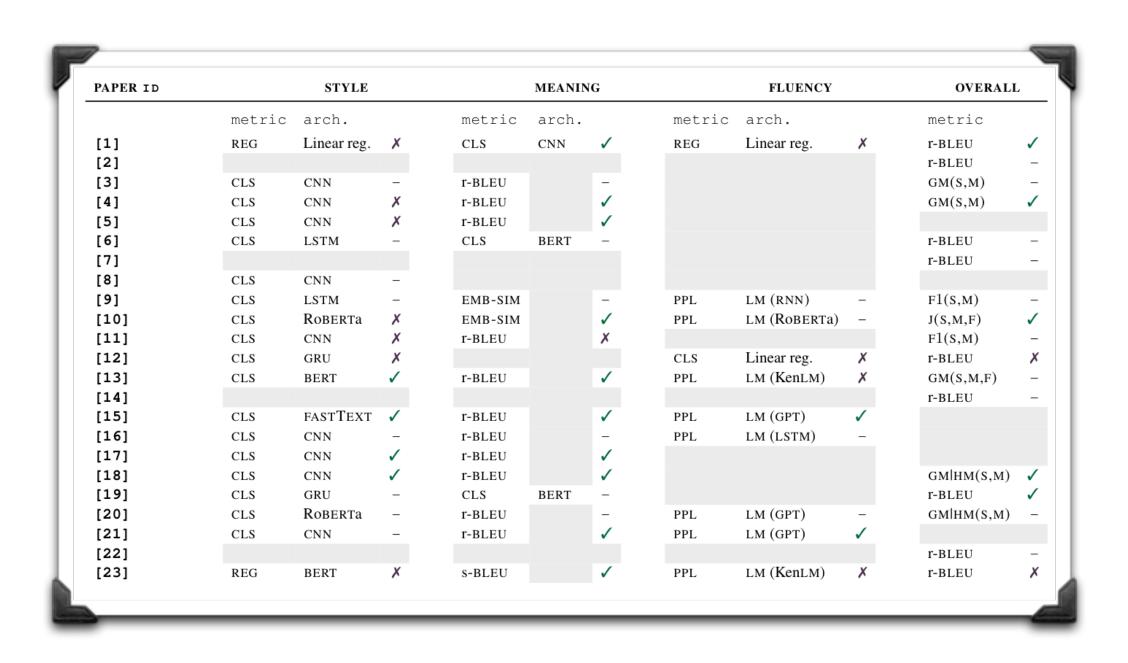
Proposed best practices

√ Style: XLM-R regression models fine-tuned on English

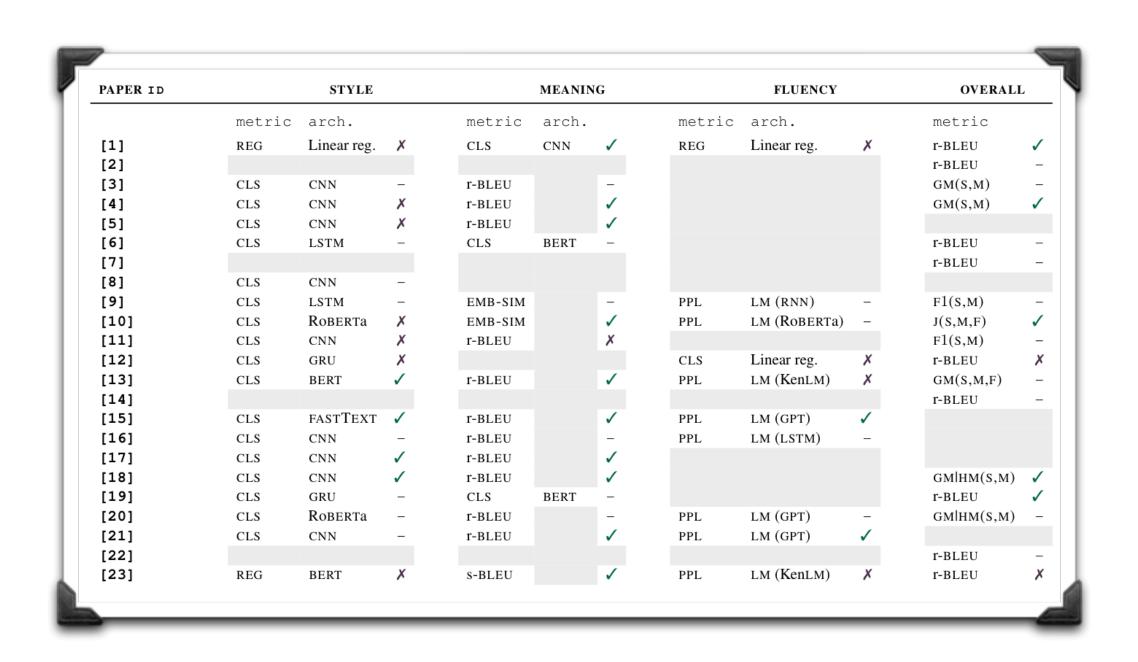
✓ Meaning: chRF score with input references

✓ Fluency: XLM-R pseudo-perplexity

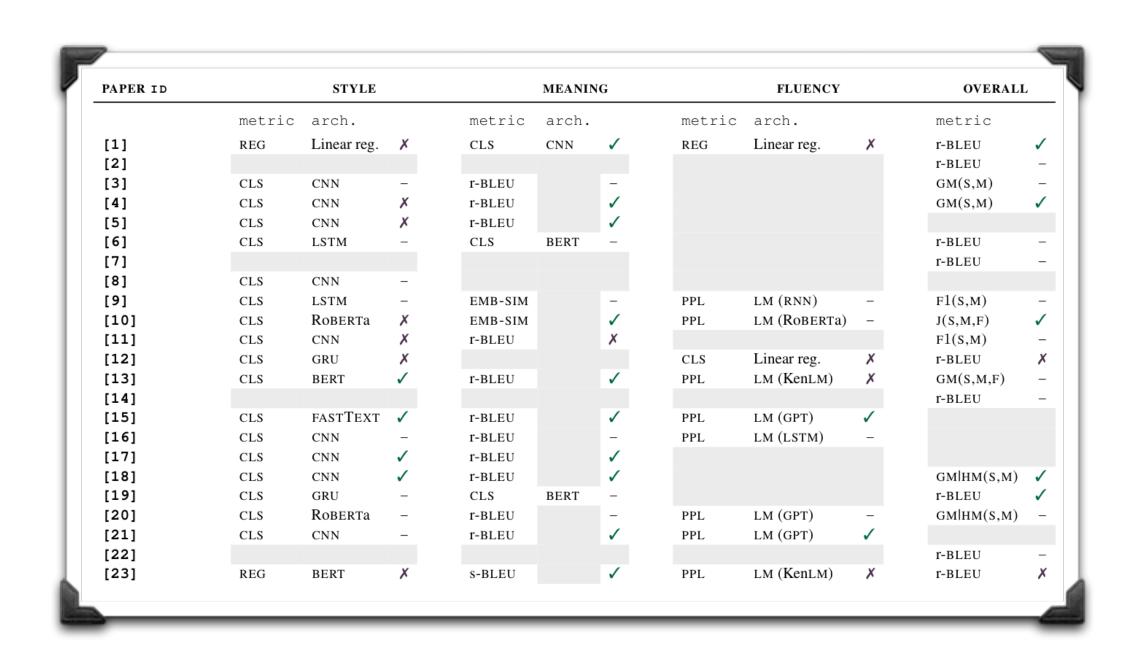




Lack of standardized metrics



- Lack of standardized metrics
- Lack of agreement with human judgments



- Lack of standardized metrics
- Lack of agreement with human judgments
- Lack of portability to languages other than English

Fluency

Style

Meaning

Fluency

Style

Meaning

Correlation analysis of automatic metrics w/ human ratings

Fluency

Style

Meaning

Correlation analysis of automatic metrics w/ human ratings

... through a multilingual lens

Fluency

Style

Meaning

Correlation analysis of automatic metrics w/ human ratings

... through a multilingual lens

... with formality as a case study

Availability of human ratings collected consistently across evaluation dimensions multiple languages

Availability of human ratings collected consistently across evaluation dimensions multiple languages*

Rate the fluency of the given sentence from 1 to 5

Rate the formality of the given sentence from -3 to +3

Rate the similarity of the two sentences from 1 to 6

Availability of human ratings collected consistently across evaluation dimensions multiple languages*

Rate the fluency of the given sentence from 1 to 5

Rate the formality of the given sentence from -3 to +3

Rate the similarity of the two sentences from 1 to 6

English

Brazilian-Portuguese

Italian

French

*Rao et al, Briakou et al.

Availability of human ratings collected consistently across evaluation dimensions multiple languages*

Rate the fluency of the given sentence from 1 to 5

Rate the formality of the given sentence from -3 to +3

Rate the similarity of the two sentences from 1 to 6

English

Brazilian-Portuguese

Italian

French

5 systems per language; 100-500 outputs per system

*Rao et al, Briakou et al.

Automatic Evaluation for Formality: Prior work uses lots of different approaches

Linear regressor

LSTM classifier

FASTTEXT classifier

RoBerta classifier

GRU classifier

CNN classifier

BERT classifier

BERT regressor

Automatic Evaluation for Formality: Prior work uses lots of different approaches

Linear regressor

LSTM classifier

FASTTEXT classifier

RoBerta classifier

BERT classifier

GRU classifier

CNN classifier

BERT regressor

Automatic Evaluation for Formality: Dimensions of comparison

Linear regressor

LSTM classifier

FASTTEXT classifier

RoBerta classifier

GRU classifier

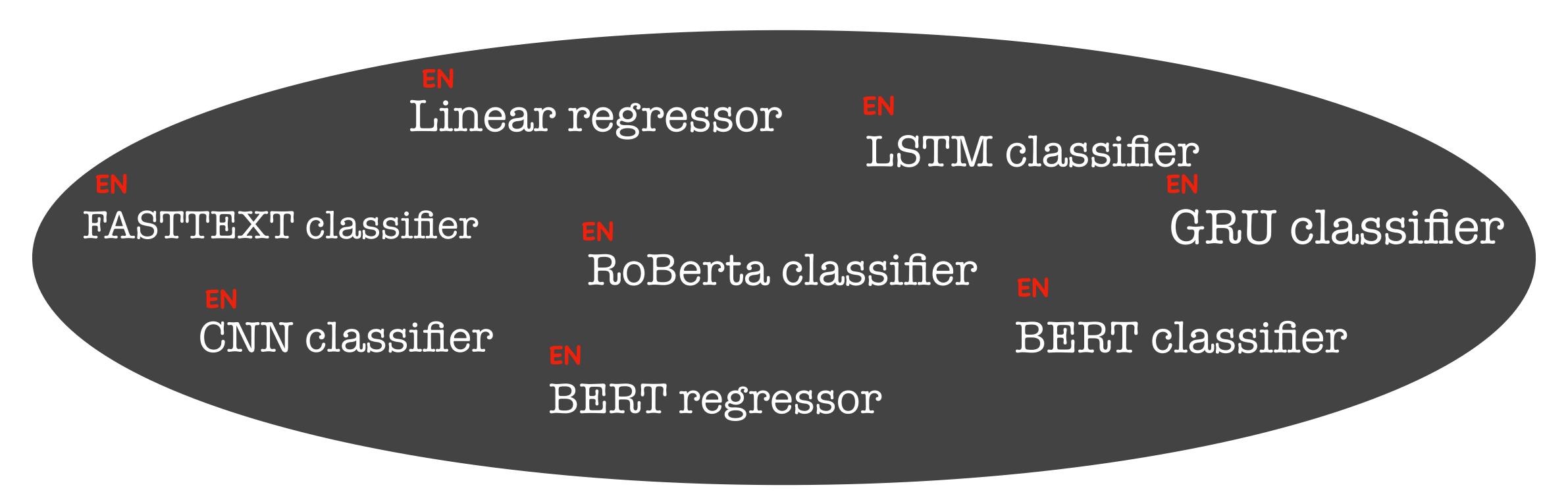
CNN classifier

BERT classifier

BERT regressor

(1) Task framing: regression vs. classification

Automatic Evaluation for Formality: Dimensions of comparison



- (1) Task framing: regression vs. classification
- (2) Multilingual framing: cross-lingual transfer

→ Models:

Fine-tuning multilingual pre-trained models (i.e., mBERT vs. XLM-R)

- Cross-lingual Transfer:
 - TRANSLATE-TRAIN
 - TRANSLATE-TEST
 - ZERO-SHOT

→ Models:

Fine-tuning multilingual pre-trained models

(i.e., mBERT vs. XLM-R)

-> Cross-lingual Transfer:

- TRANSLATE-TRAIN
- TRANSLATE-TEST
- > ZERO-SHOT

TRAINING DATA

EN Training data

Machine Translate in i.e., FR

INFERENCE DATA

Fr Test data

→ Models:

Fine-tuning multilingual pre-trained models

(i.e., mBERT vs. XLM-R)

-> Cross-lingual Transfer:

- TRANSLATE-TRAIN
- TRANSLATE-TEST
- > ZERO-SHOT

TRAINING DATA

EN Training data

INFERENCE DATA

Fr Test data

Machine Translate in EN

→ Models:

Fine-tuning multilingual pre-trained models

(i.e., mBERT vs. XLM-R)

Cross-lingual Transfer:

- TRANSLATE-TRAIN
- TRANSLATE-TEST
- > ZERO-SHOT

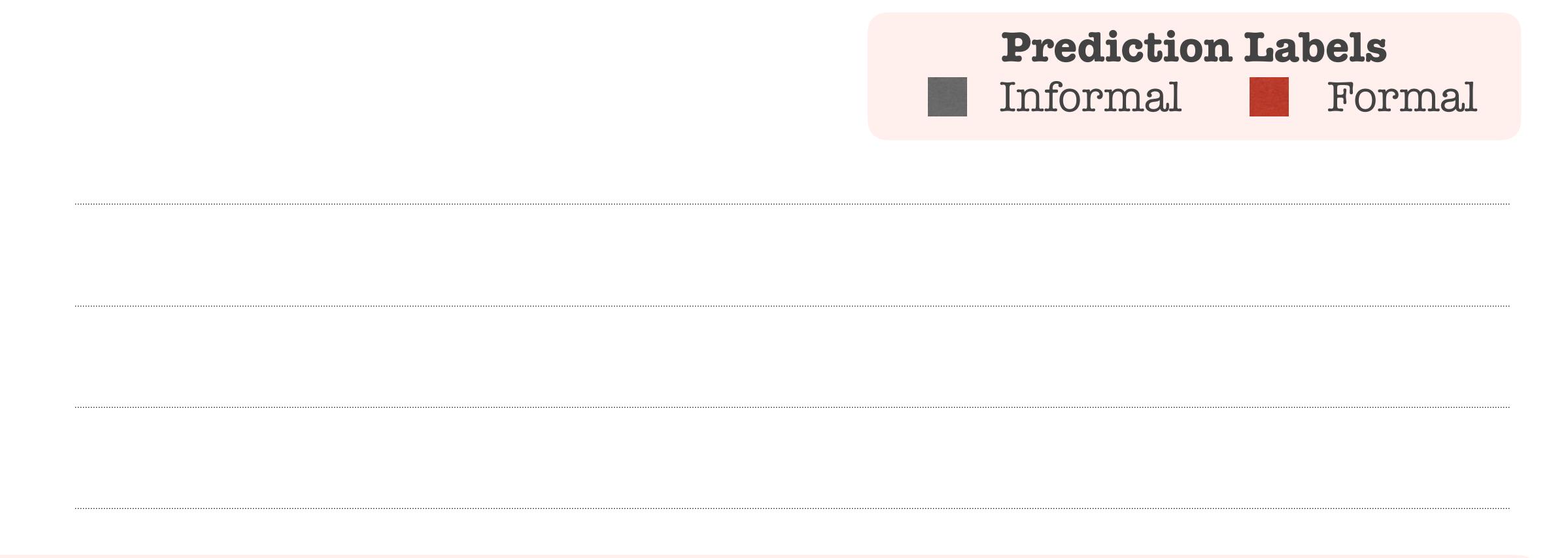
TRAINING DATA

EN Training data

INFERENCE DATA

Fr Test data

Evaluating Binary Formality Classifiers



Very Informal

Informal

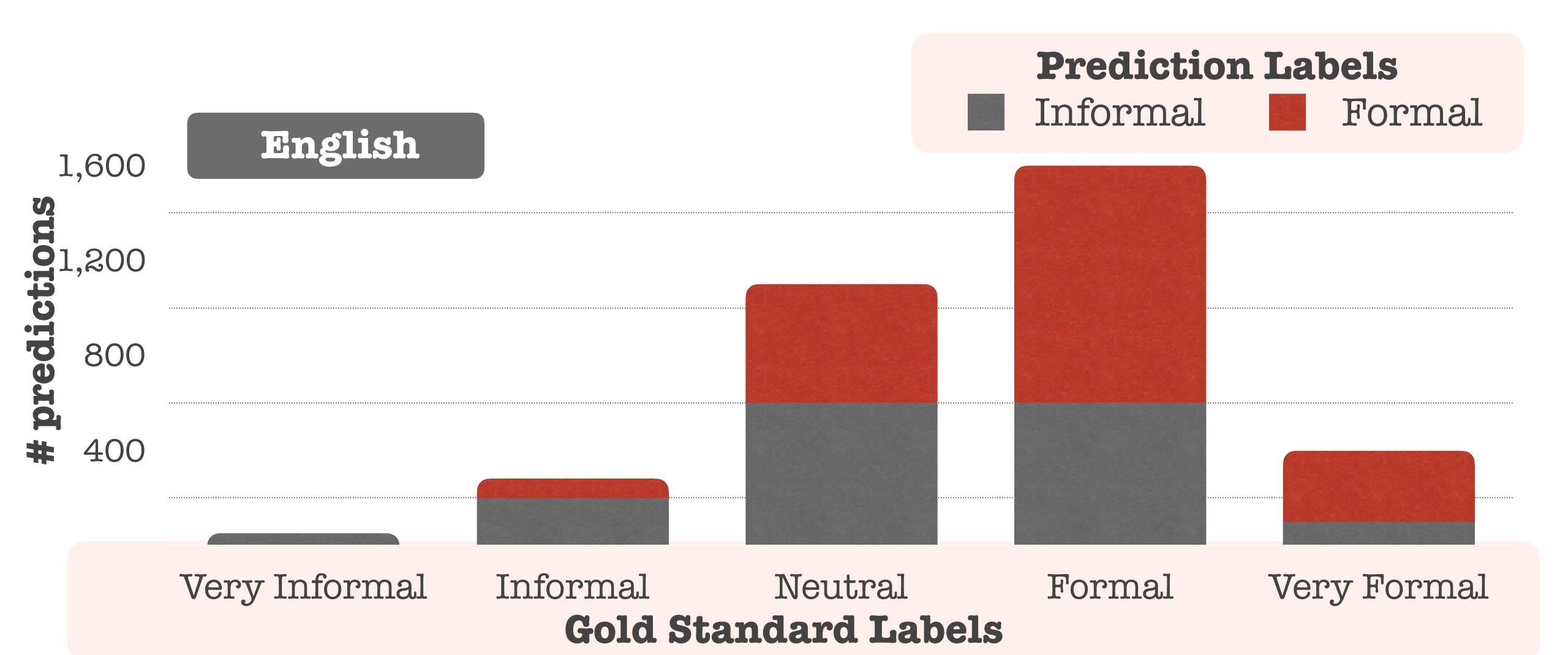
Neutral

Formal

Very Formal

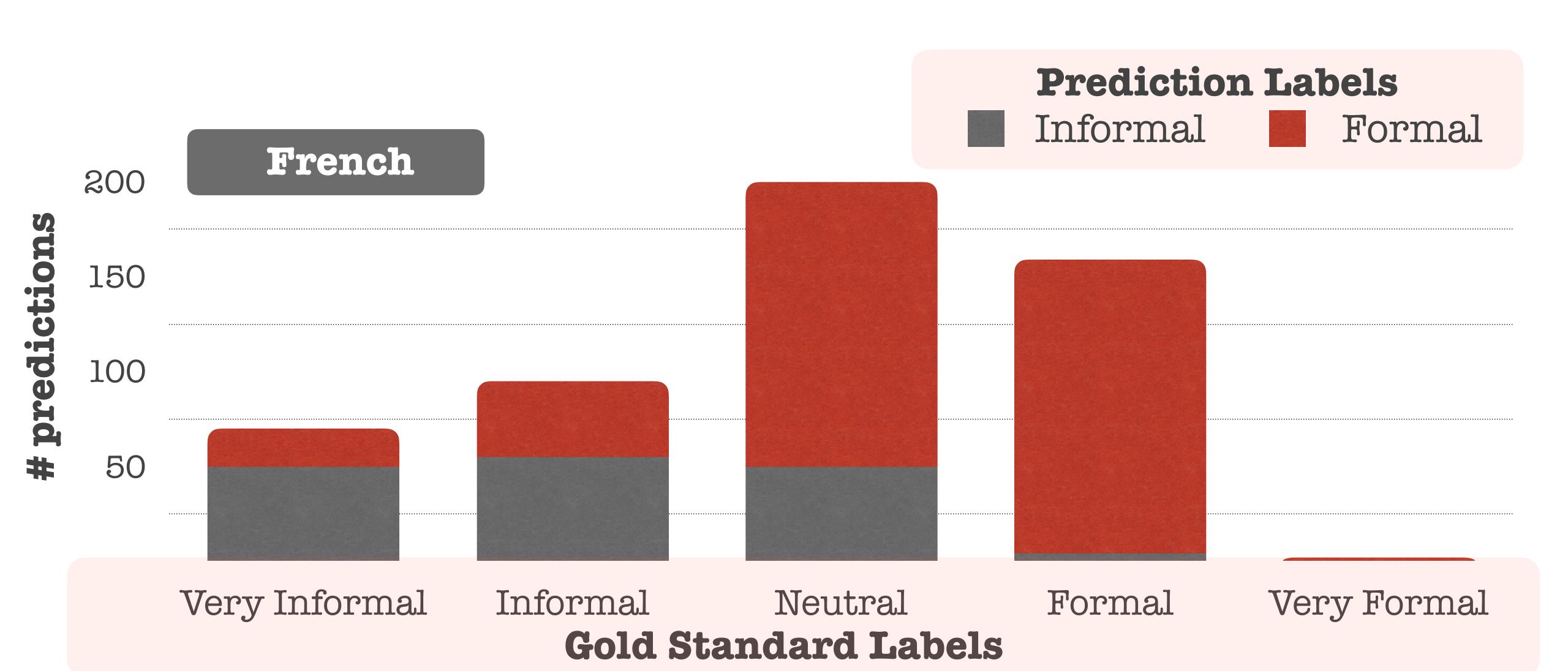
Binary Formality Classifiers...

Lack sensitivity to different formality levels



Binary Formality Classifiers...

Are biased towards the formal class



Evaluating Formality Regressors

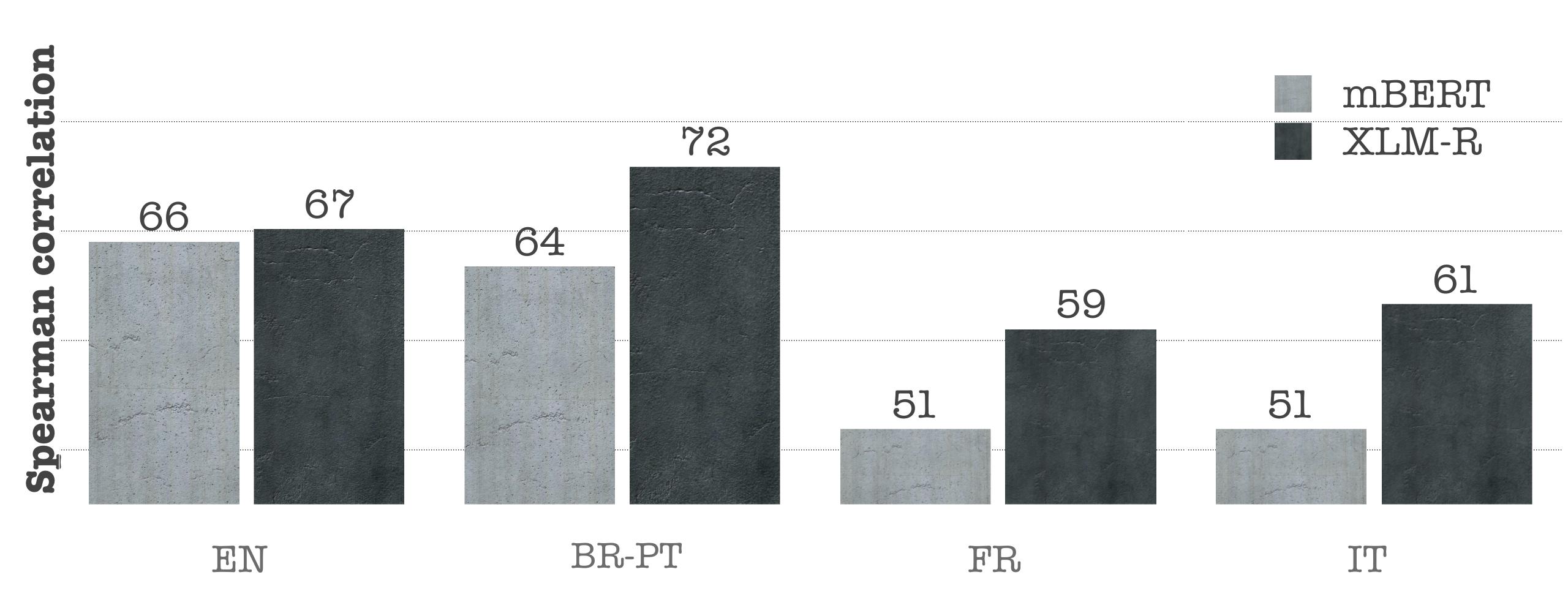
ZERO-SHOT

mBERT
XLM-R

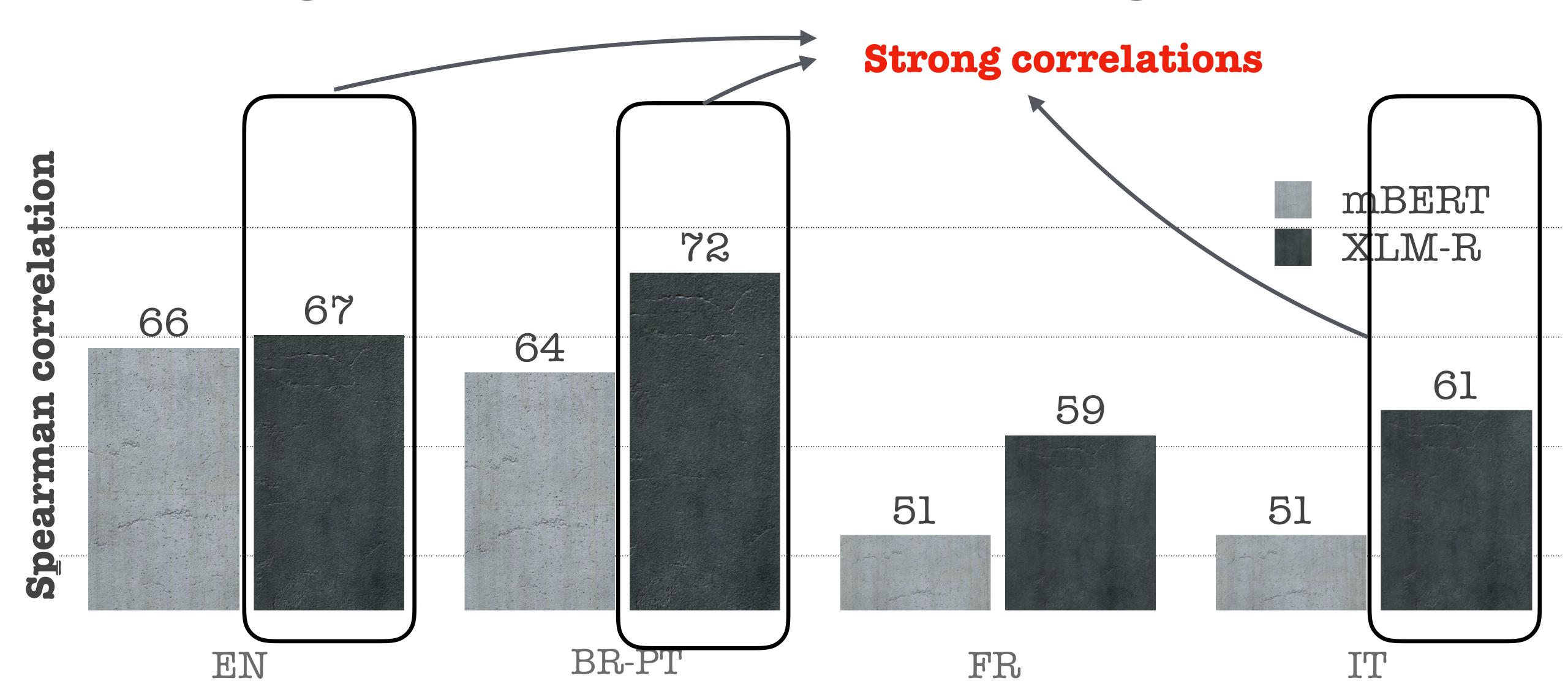
pearman correla

EN BR-PT FR

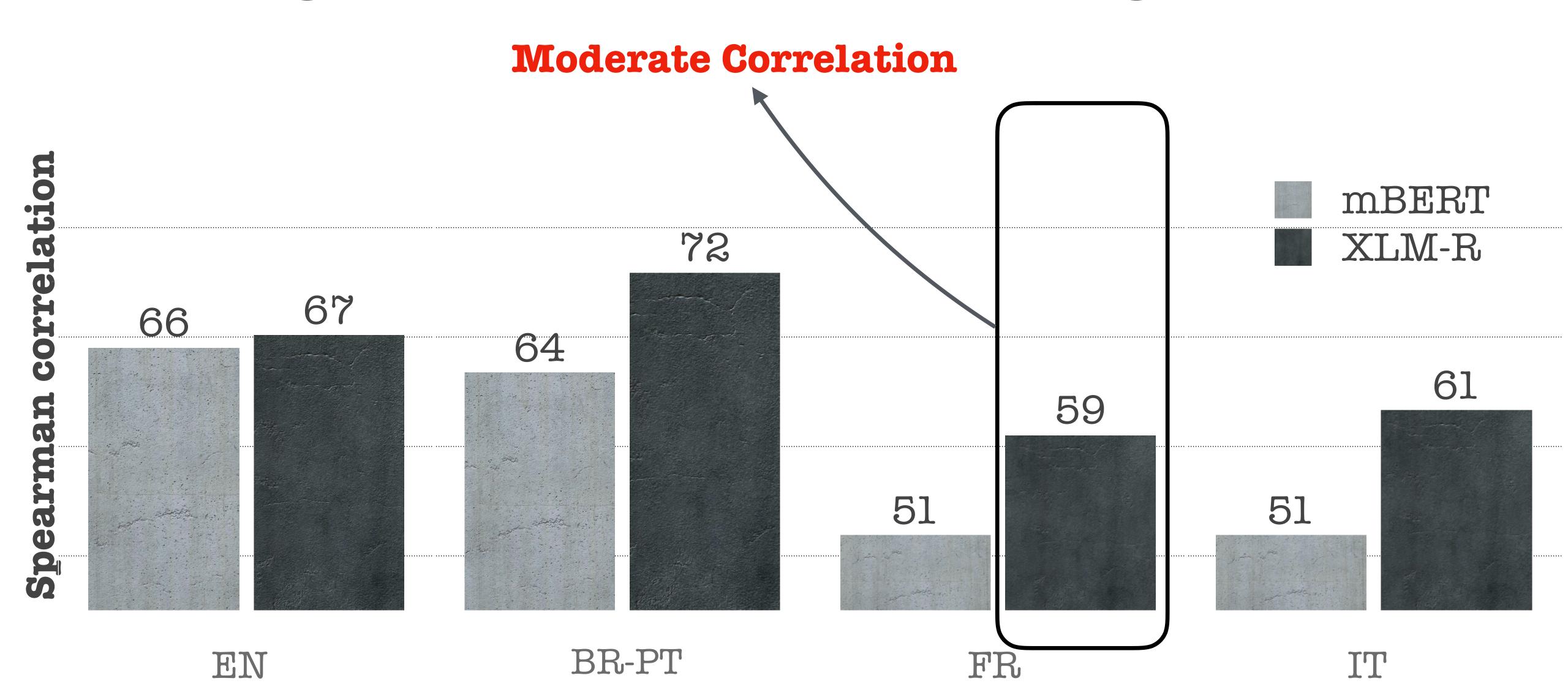
Best Practice for Formality Evaluation: XLM-R regressor in ZERO-SHOT setting



Best Practice for Formality Evaluation: XLM-R regressor in ZERO-SHOT setting



Best Practice for Formality Evaluation: XLM-R regressor in ZERO-SHOT setting



String-based

Require access to a reference segment

S-BLEU chrF

Supervised

Fine-tune on labeled data (Semantic Textual Similarity)

mBERT XIVIL-R

X-transfer

Unsupervised

Based on pre-trained embeddings

BERT-score

Word's Movers Distance

String-based

Require access to a reference segment

s-BLEU

chrF

METEOR

r-BLEU

Supervised

Fine-tune on labeled data (Semantic Textual Similarity)

mBERT

XIVIL-R

X-transfer

Unsupervised

Based on pre-trained embeddings

BERT-score

Word's Movers Distance

String-based

Require access to a reference segment

s-BLEU chrF
METEOR r-BLEU

Supervised

Fine-tune on labeled data (Semantic Textual Similarity)

mBERT XML-R

X-transfer

Unsupervised

Based on pre-trained embeddings

BERT-score

Vord's Movers Distance

String-based

Require access to a reference segment

s-BLEU chrF
METEOR r-BLEU

Supervised

Fine-tune on labeled data (Semantic Textual Similarity)

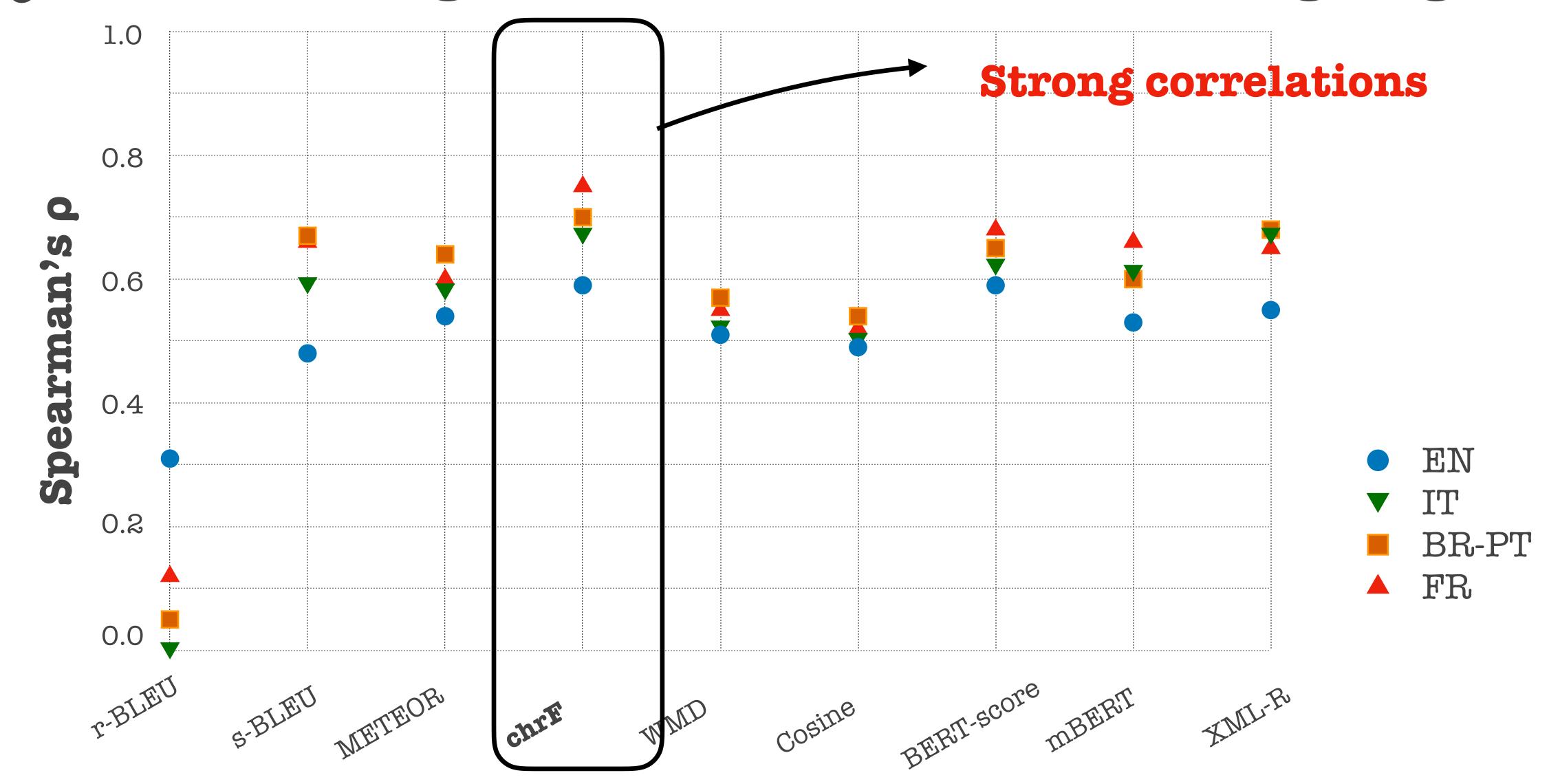
mBERT XML-R
XX-transfer

Unsupervised

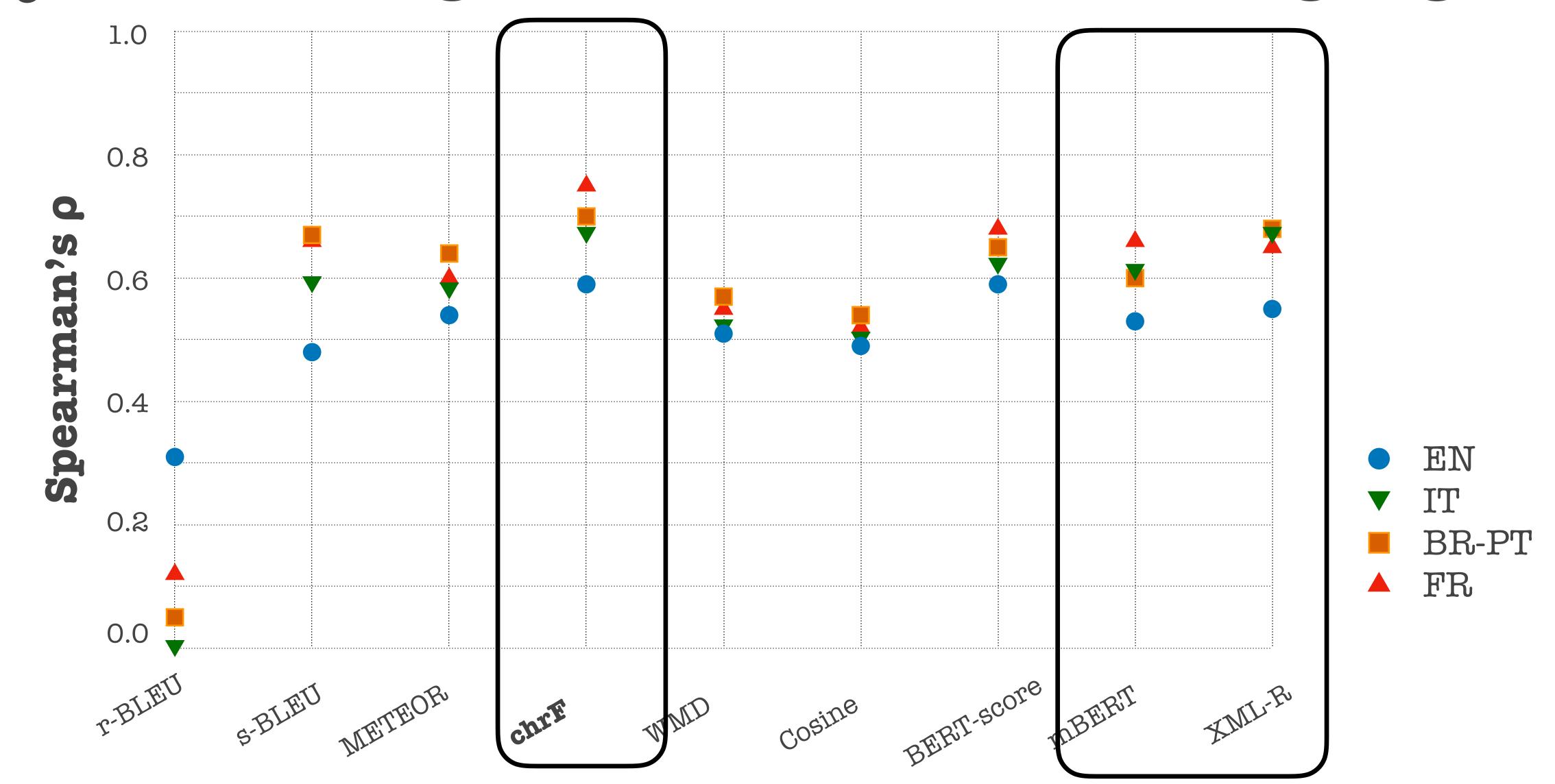
Based on pre-trained embeddings

Cosine BERT-score
Word's Movers Distance

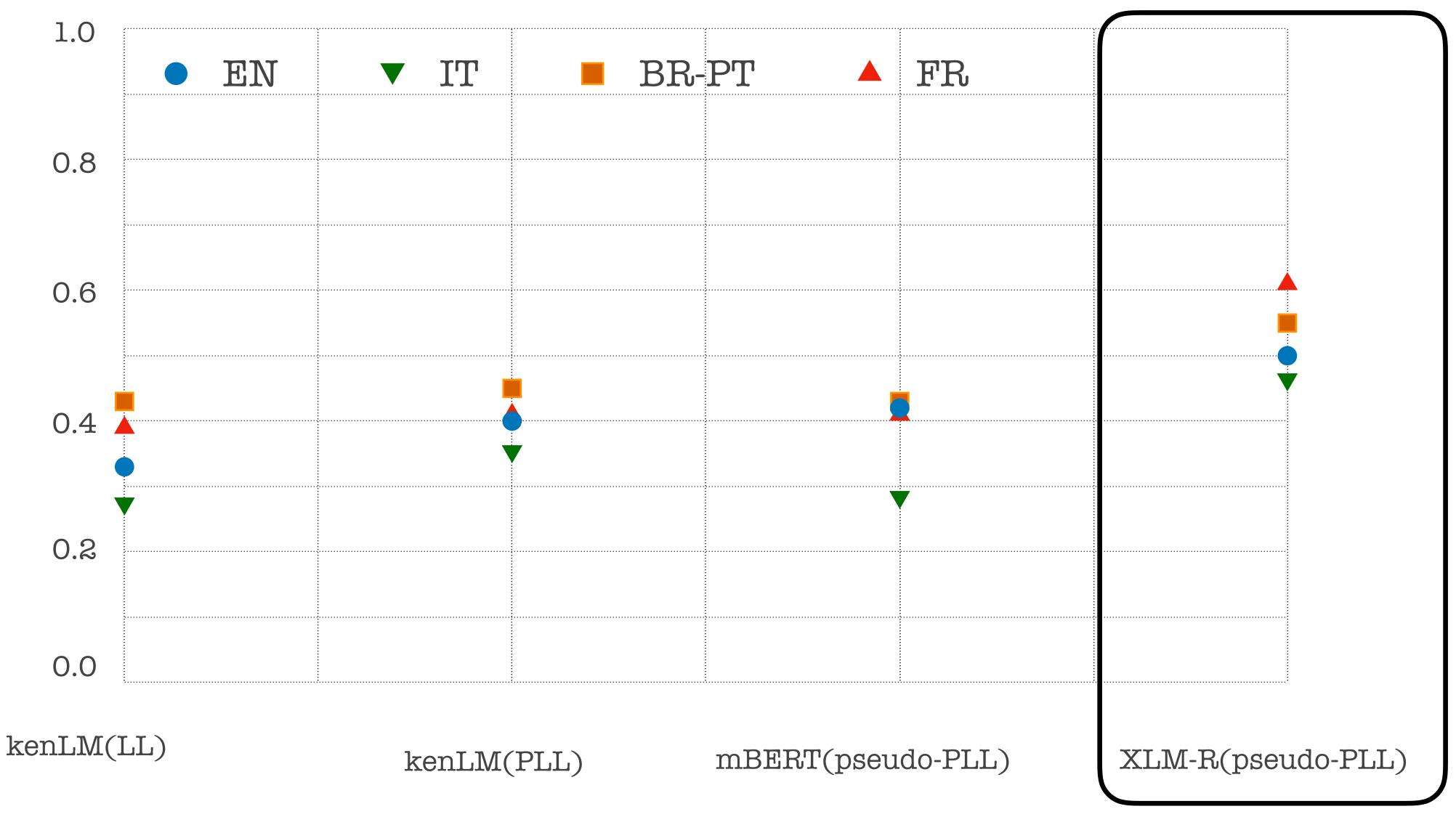
Best Practice for Meaning Evaluation: chrF yields strong correlations across languages



Best Practice for Meaning Evaluation: chrF yields strong correlations across languages



Best Practice for Fluency Evaluation: XLM-R pseudo-perplexity Mode



Summary of Findings

Limitations of current automatic evaluation for FoST

Lack of standardized metrics

Lack of agreement with human judgments

Lack of portability to languages other than English

Proposed best practices

✓ Style: XLM-R regression models fine-tuned on English

✓ Meaning: chRF score with input references

✓ Fluency: XLM-R pseudo-perplexity

Code & Data: https://github.com/ Elbria/xformal-FoST-meta

Summary of Findings

Limitations of current automatic evaluation for FoST

Lack of standardized metrics

Lack of agreement with human judgments

Lack of portability to languages other than English

Proposed best practices

✓ Style: XLM-R regression models fine-tuned on English

✓ **Meaning:** chRF score with input references

✓ Fluency: XLM-R pseudo-perplexity

Code & Data: https://github.com/ Elbria/xformal-FoST-meta

Summary of Findings

Limitations of current automatic evaluation for FoST

Lack of standardized metrics

Lack of agreement with human judgments

Lack of portability to languages other than English

Proposed best practices

✓ Style: XLM-R regression models fine-tuned on English

✓ **Meaning:** chRF score with input references

✓ Fluency: XLM-R pseudo-perplexity

Code & Data: https://github.com/ Elbria/xformal-FoST-meta